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Abstract—In this paper, we propose a reduced-reference
scheme for evaluating the quality of blurred images under
the theory of free-energy principle. Specifically, the free-energy
principle indicates that the brain tries to account for the input
image with an internal generative model and the discrepancy
between the image and its model-explained version, which can
be measured by free energy, is related to the image’s perceptual
quality. Accordingly, we define a visual distance between the
blurred image and its original image in free energy to evaluate
the quality of the blurred image. Therefore, the proposed quality
scheme belongs to reduced-reference methods, which needs some
information from the original image for quality assessment.
Experimental results on public databases, LIVE, TID2013 and C-
SIQ, demonstrate the proposed method works in high consistency
with subjective assessment results and outperforms representative
image quality assessment approaches.

Index Terms—Image quality assessment, image blurriness,
reduced-reference, free energy, sparse representation

I. INTRODUCTION

Nowadays, image quality becomes the more and more
important issue to be addressed in reality. The reason may
be summarized into two aspects, one is that as the develop-
ment of our life, the requirements of the image quality from
people become higher and higher. On the other hand, the
image quality can’t be guaranteed during image processing or
transmission. For example, the image is always compressed
due to the bandwidth restrictions for transmission. Therefore,
image quality assessment (IQA) is always used to monitor the
image quality or employed as the performance measure for
image processing algorithms [1] [2].

Generally, objective IQA methods are categorized into three
classes on the basis of the access to the reference image
for quality estimation, which are full reference (FR), reduced
reference (RR) and no reference (NR) respectively. For FR
IQA, the reference or distortion-free image is fully referred
when we assess the image quality. It’s not difficult to find
that the reference image is absent or hard to obtain in most
cases. Therefore, the FR condition is rather ideal in practice.

Then researchers develop RR methods that require partial
information of the reference image for quality assessment.
Further, NR IQA can directly evaluate the image quality
without any information of the reference image, which is
highly desirable in applications. The representative works of
IQA can be referred to [3] [4] etc.

In this paper, our attention is focused on RR IQA and the
investigation of the quality assessment problem of a special
kind of images, which refers to the blurred images. There are
many causes that lead to image blur, e.g. camera out-of-focus,
object motion or excessive compression etc. The intuitive
observation of the blurred images is the textures or edges are
always destroyed. Therefore, the image blurriness estimation
can be concentrated on the image edges. In [5], the perceptual
assessment model was constructed based on the pair edges
detectors. Additionally, the authors proposed an objective
image sharpness metric through the measure of just noticeable
blur (JNB) around the image edges [6]. From another point
of view, the texture degradation due to image blur can also be
characterised by the attenuation of high frequency coefficients
in the frequency domain. For instance, a fast wavelet-based
image sharpness estimation method (FISH) [7] was developed
by measuring the energy of the coefficients in the wavelet
transform domain. Certainly, spatial and spectral combined
analysis can assess the image blurriness complementarily [8].

For the quality assessment of the blurred images, the afore-
mentioned blurriness / sharpness assessment methods can be
applied to this question directly as blurriness is the main factor
that affects the image quality. While in this paper, we view
this question from a new perspective of the exploration of the
brain’s activities when perceiving the images. Specifically, the
exploration of the brain is revealed by the recent developments
in brain theory and neuroscience, particularly the free-energy
principle that the perception and understanding of an image are
modeled as an active inference process, in which the brain tries
to predict the input image through an internal generative mod-
el. While the discrepancy, measured by free energy, between
the image and its model-predicted version is closely related to
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the perceptual quality of the image [9] [10] [11] [12]. In other
words, free energy of the image can be viewed as an quality-
connected feature and we can estimate the image quality by
inspect the variation of free energy. Accordingly, we design a
quality metric to measure the quality of the blurred images.
Experiments on public databases, LIVE, TID2013 and CSIQ,
prove that the proposed metric works in high consistency with
subjective assessment results and outperforms representative
IQA and blurriness assessment approaches at the meantime.

II. THE PROPOSED QUALITY METRIC

A. Formulation of Free-energy Principle
Our method is based on the free-energy principle. Therefore,

it is needed to specify the formulation of the free-energy
principle clearly. As mentioned before, the fundamental as-
sumption in free-energy principle is that the cognitive process
is governed by an internal generative model in the brain. With
the internal model, the brain is able to actively infer predictions
of meaningful information from the visual scenes.

For operational amenability, it is assumed that the internal
generative model G for visual perception is parametric, which
explains visual scenes by adjusting the parameter vector g.
Specifically, given an image I , its ’surprise’ can be calculated
by integrating the joint distribution P (I,g) over the space of
the internal model parameters g as:

− logP (I) = − log

∫
P (I,g)dg. (1)

Then a dummy term Q(g|I) is integrated into both the
denominator and numerator of the right part of equation (1)
as follows:

− logP (I) = − log

∫
Q(g|I)P (I,g)

Q(g|I)
dg. (2)

Here, Q(g|I) is an auxiliary posterior distribution of the model
parameters given the image, which can be thought of as an
approximate posterior to the true posterior of the model param-
eters P (g|I) calculated by the brain. The brain minimizes the
discrepancy between the approximate posterior Q(g|I) and the
true posterior P (g|I). Through Jensen’s inequality, equation
(2) can be written as:

− logP (I) ≤ −
∫
Q(g|I) log P (I,g)

Q(g|I)
dg. (3)

Afterwards, the right side of equation (3) is defined as the free
energy as follows:

F (g) = −
∫
Q(g|I) log P (I,g)

Q(g|I)
dg. (4)

Obviously, F (g) defines an upper bound of ’surprise’ for
image I . For intuitive understanding, with P (I,g) =
P (g|I)P (I), we further derive equation (4) as:

F (g) =

∫
Q(g|I) log Q(g|I)

P (g|I)P (I)
dg

= − logP (I) +

∫
Q(g|I) log Q(g|I)

P (g|I)
dg (5)

= − logP (I) +KL(Q(g|I)‖P (g|I)),

where KL(·) refers to the Kullback-Leibler divergence be-
tween the approximate posterior and the true posterior distribu-
tions and it’s nonnegative. It is clearly seen that the free energy
F (g) is greater than or equal to the image ’surprise’ -logP (I).
The brain tries to lower the divergence KL(Q(g|I)‖P (g|I))
between the approximate posterior and its true posterior dis-
tributions when perceiving image I . Interested readers can
refer to more information about free energy in [9] and its
application to IQA of screen content images [13] and natural
scene images [14] and to visual saliency detection [15].

B. Approximation of The Brain Generative Model

Since free energy of the image is a discrepancy measure
between the image data and its explanation by the brain, we
try to find its computational form for actual quality evaluation.
Toward this end, the approximation of the brain generative
model G should go first. As stated in [16], the receptive fields
(RFs) of simple cells in mammalian primary visual cortex
can be characterized as being spatially localized, oriented
and bandpass. While sparse representation is evidenced to
resemble these neural response characteristics well and the
superiority of sparse representation for approximating the
internal model has been verified in [17]. Inspired by this,
in this paper, we approximate the generative model with
sparse representation. Specifically, Sparse representation refers
to representing a signal with a linear combination of a small
number of atoms from a predefined or trained dictionary [18].
Mathematically, given a signal y ∈ Rn with an overcomplete
dictionary matrix D ∈ Rn×K that contains K columns, each
column represents one prototype atom. Then the dictionary
D can be denoted as [d1,d2,d3...dK ]. The signal y is
represented as a sparse linear combination of the atoms in
D as:

y = Dx, (6)

or approximately represented as:

y ≈ Dx s.t. ‖y −Dx‖p ≤ ξ, (7)

where x ∈ RK represents the vector that contains the
representation coefficients. ‖ · ‖p is the lp norm. What we
concerned is finding fewest number of nonzero coefficients
to represent the signal y, namely requesting for the sparsest
representation:

x∗ = argmin
x
‖x‖0 s.t. y = Dx, (8)

where ‖ · ‖0 is the l0 norm, meaning the number of nonzero
elements of a vector. However, l0-minimization is an NP-
hard problem, one approach is applying “pursuit algorithm”
to find an approximate solution. Another alternative solution
is to replace l0 norm with l1 norm and minimize the l1 norm
as:

x∗ = argmin
x
‖x‖1 s.t. y = Dx, (9)



This equation can be further turned into an unconstrained
optimization problem:

x∗ = argmin
x

1

2
‖y −Dx‖2 + λ‖x‖1, (10)

where λ is a positive constant balancing the importance
of the reconstruction fidelity term and the sparse constraint
term. This unconstrained optimization problem can be solved
by iterative shrinkage/thresholding algorithm [19]. With the
obtained coefficient vector x and the predefined dictionary D,
we can get the sparse representation of signal y accordingly.

C. The Quality Metric for Blurred Images
As the free-energy principle indicates, free energy of an

image which measures the discrepancy between the image and
its brain prediction is closely related with the image quality.
Therefore, we can estimate the image quality through checking
the variation of its free energy.

Firstly, free energy of an image I can be defined as the
entropy of the prediction residual, which is denoted as:

R = I − Ip (11)

where R refers to the prediction residual, Ip represents the
sparse representation of image I . Then free energy of I is to
take the entropy of the prediction residual R as:

F (I) = E(R) (12)

where F (I) refers to the free energy of image I , E(·) is the
function to calculate entropy. While as the research of image
saliency prediction indicates, the human vision system (HVS)
selectively pays attention to the salient areas in the image.
Therefore, we redefine the free energy of I according to the
saliency detection results of I in:

F ′(I) = E(RS) (13)

where F ′(I) is the redefined free energy of I , RS consists of
the selected pixels in R whose positions are corresponding
to that of l% most salient pixels in I . In implementation,
the saliency of the pixel in I can be predicted by saliency
prediction in advance. The value of l is empirically set to 2.

Secondly, with the specific definition of free energy and its
quality proxy character, we can devise the quality metric of
the blurred images through comparing the free energy between
the reference image and the blurred image as follows:

Q = F ′(I)− F ′(Iref ) (14)

where Q presents the quality of the blurred image, F ′(·) is
the function to calculate free energy defined in Eq. (13), I
refers to the blurred image and Iref is its reference image.
As we want to show that the lower Q is, the closer the free
energy is between the blurred image and its reference image,
which means the blurred image tends to have a higher quality
and vice versa. Actually, our metric belongs to RR categories
which needs information (free energy) of the reference image
for quality estimation. While as we defined, the free energy can
be approximated by entropy of the prediction residual which
is just a number and negligible to the image data.

III. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experiment Configurations

In implementation, we divide the image into 8×8 non-
overlapped patches. Each patch is vectorized as the signal y
and we seek its sparsest representation according to II-B de-
scribed. The overcomplete DCT dictionary is employed as the
predefined dictionary D, the size of D is 64×128 with totally
128 atoms available for representing each patch. We restrict
the maximum number of nonzero coefficients for representing
each patch to 20. The orthogonal matching pursuit (OMP)
algorithm [20] is utilized to find the representation coefficients.
The saliency prediction model AIM [21] is employed in the
computation of the image’s free energy.

B. Experimental Results and Comparison

To evaluate the prediction performance of our proposed
quality metric, we test it on the subsets of blurred images in
three widely-adopted image databases, which are LIVE [22],
TID2013 [23] and CSIQ [24] respectively. As suggested by
VQEG [25], we first map the results given by objective meth-
ods to subjective ratings through a four-parameter nonlinear
regression function as:

f(x) =
ξ1 − ξ2

1 + exp(−x−ξ3ξ4
)
+ ξ2 (15)

where x and f(x) respectively stand for the objective score and
the mapped score. Spearman Rank-Order Correlation Coeffi-
cient (SROCC), Pearson Linear Correlation Coefficient (PLC-
C) and Root Mean-Squared Error (RMSE) are employed to
evaluate the objective IQA method’s prediction performance.
It should be pointed out that a superior objective method
is expected to achieve higher values in SROCC and PLCC,
while a lower value in RMSE. We tabulate the performance
results in Table I. As can be found, we compare our method
with some representative IQA approaches, including PSNR,
SSIM [3], DIIVINE [26], BRISQUE [27], NFERM [14],
CPBD [28], S3 [8], FISH [7], ARISM [29], FEDM [9]. Among
them, PSNR and SSIM are the most well known FR metrics,
DIIVINE, BRISQUE and NFERM are the representative NR
IQA methods, CPBD, S3, FISH and ARISM are the special
methods for blurriness assessment and FEDM belongs to RR
IQA methods. To the blurred images, SSIM is better than
PSNR as can be observed and the three NR methods have
no big gap on the final prediction performance. Among the
special blurriness assessment methods, the newly proposed
ARISM earns the best prediction results. While ARISM does-
n’t perform excellently on TID2013 database. All in all, our
proposed method achieves the best performance all over the
three databases.

IV. CONCLUSION

In this paper, we have proposed a RR quality metric for the
blurred images. The proposed metric is under the exploration
of the free-energy principle in brain theory and neuroscience.
Specifically, the internal generative model was approximated



TABLE I
PREDICTION PERFORMANCE COMPARISON ON LIVE, TID2013 AND CSIQ DATABASES. THE BEST PERFORMANCE IN EACH INDICE IS MARKED IN BOLD.

Database Index PSNR SSIM DIIVINE BRISQUE NFERM CPBD S3 FISH ARISM FEDM Proposed

LIVE

SROCC 0.7823 0.8944 training images 0.9186 0.9441 0.8808 0.9517 0.7594 0.9623

PLCC 0.7835 0.8743 training images 0.8953 0.9527 0.9043 0.9562 0.7351 0.9469

RMSE 11.4780 8.9643 training images 8.2263 4.7769 7.8844 4.6028 10.6586 5.0542

TID2013
SROCC 0.9149 0.9629 0.8344 0.8143 0.8498 0.8515 0.8046 0.8024 0.8980 0.8897 0.9616

PLCC 0.9137 0.9577 0.8472 0.8248 0.8493 0.8553 0.8432 0.8327 0.8953 0.8891 0.9542

RMSE 0.5071 0.3592 0.6629 0.7057 0.6588 0.6466 0.6708 0.6910 0.5560 0.5712 0.3732

CSIQ
SROCC 0.9291 0.9245 0.8716 0.9025 0.8964 0.8853 0.8681 0.8941 0.9255 0.8522 0.9426

PLCC 0.9252 0.9005 0.8979 0.9274 0.9218 0.8822 0.8833 0.9232 0.9456 0.8150 0.9290

RMSE 0.1087 0.1246 0.1262 0.1072 0.1111 0.1349 0.1343 0.1102 0.0933 0.1660 0.1061

by sparse representation and the free energy variation between
the original image and the blurred image was calculated to
measure the perceptual quality of the blurred image. Through
extensive experiments on LIVE, TID2013 and CSIQ, we
verified the proposed metric works in high consistency with
subjective human ratings.
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